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NUMERICAL SOLUTION OF 2D AND 3D TURBULENT 
INTERNAL FLOW PROBLEMS 

CHEN NAJXING A N D  XU YANJI 
Institute of Engineering Thermophysics, P.O. Box 2706, Beving I W O ,  China 

SUMMARY 
The paper describes a method for solving numerically two-dimensional or axisymmetric, and three- 
dimensional turbulent internal flow problems. The method is based on an implicit upwinding relaxation 
scheme with an arbitrarily shaped conservative control volume. The compressible Reynolds-averaged 
Navier-Stokes equations are solved with a two-equation turbulence model. All these equations are 
expressed by using a non-orthogonal curvilinear co-ordinate system. The method is applied to study the 
compressible internal flow in modem power installations. It has been observed that predictions for two- 
dimensional and three-dimensional channels show very good agreement with experimental results. 
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INTRODUCTION 

In modern power installations the flow phenomena that exist in advanced turbomachinery are 
extremely complex and propose a challenge to engineers and scientists to improve the design 
procedure. Such flows are generally unsteady, turbulent and three-dimensional. The viscous and 
turbulent effects have a substantial influence on properties of internal flow components. The 
appearance of secondary flows and boundary layer separations may bring about high energy 
losses.' -3 Hence much more careful design is required, especially for decelerated internal flow. In 
the past decade, many efforts have been made to promote the efficiency of turbomachinery. 
Various aerodynamic computational methods4- ' have been developed. 

With the numerous analyses of inviscid numerical calculations it is difficult to obtain informa- 
tion on energy losses and boundary layer separations due to viscous effects. The rapid progress of 
high-speed computers and the considerable improvement in measuring techniques have stimu- 
lated the development of numerical calculations of the compressible viscous flow fields through 
turbomachinery cascades. It is urgent to develop a computational technique which can solve the 
two-dimensional and three-dimensional Reynolds-averaged Navier-Stokes equations in a prac- 
tical CPU time. However, it is well known that the difficulty in solving the velocity is that the 
pressure distribution cannot be known beforehand or directly evaluated from the continuity 
equation. In 1972 the pressure correction method was developed by Patankar and S~a1ding.l~ In 
their paper the pressure correction method was first used for correcting the velocity distribution 
instead of satisfaction of the continuity equation, and a staggered grid system was employed 
to avoid the associated pressure and velocity oscillation efficiently. Since 1972 a series of 
papers15 - l9 concerning the method of Patankar and Spalding have been successfully applied to 
predict the viscous flow fields and heat transfer characteristics in engineering practice. 
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On the basis of the above-described method, a set of governing equations of the compressible 
turbulent flow, expressed by using a non-orthogonal curvilinear co-ordinate system and physical 
contravariant components of vectors,” are applied in the present study and solved by a time- 
dependent technique and an implicit scheme with a conservative control volume. The purpose of 
this paper is to attempt to develop and assess a computer programme for the calculation of two- 
dimensional or axisymmetric, and three-dimensional turbulent internal flows. To obtain accurate 
numerical solutions for the complex turbulent flow, a two-equation turbulence is 
employed. 

The governing equations and the turbulence model are described in the following section. The 
next section concentrates on the numerical procedure. Then a special computational grid system, 
namely an equiproportional grid system, is presented. For verification of the method, several 
numerical examples have been carried out and compared with experimental results. Conclusions 
resulting from the present study are given in the last section. 

GOVERNING EQUATIONS AND TURBULENCE MODEL 

The vector forms of the conservative equations describing the viscous 
follows: 

are written as 

continuity equation 
a P  -+ v * (pV)  =o, 
a t  

momentum equation 

energy equation 

dz 1 ap 1 # 
dt p at  p P 
-=-- + 4 +- V . Fvia +-, (3) 

where V is the absolute velocity vector, p, p and T denote the static density, pressure and 
temperature respectively, I represents the total enthalpy, Fvis and V - F,, represent the viscous 
force vector and its work done respectively, is the dissipation function and q denotes the heat 
transfer term. 

Besides the above-mentioned equations the following equations are also employed: 

definition of total enthalpy 

Z = C, T+ V2/2, (4) 

p = p R T .  (5 )  

equation of a perfect gas 

The governing differential equations applied to the present study are the Reynolds-averaged 
Navier-Stokes equations of a compressible fluid. The viscous terms and heat transfer term are 
calculated from the effective viscosity and the effective conductivity respectively. They can be 
expressed as 
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where the laminar viscosity p, is determined from the thermal properties of the fluid and the 
turbulent viscosity p, is obtained by the expression 

p,=C,,pk2/&. (7) 
In the above equation C,, is a constant, C,=0.09. The turbulent kinetic energy k and its 
dissipation rate E are predicted from a two-equation turbulence model. The governing differential 
equations for k and E are 

where G denotes the generation rate of turbulent kinetic energy and the empirical constants 
a,, C, and C2 are set to the following values: 

= 1.0, u, = 1.3, c1 = 1-44, C2 = 1-92. (10) 

GENERALIZED FORM OF THE GOVERNING EQUATIONS 

To handle the arbitrarily shaped boundaries conveniently, the continuity equation, momentum 
equations in three directions, energy equation and two equations of turbulence modelling are 
written in a general form and expressed by a curvilinear co-ordinate system: 

r = L-0, P.fJS, Pef JS, PerJS, LJSIC,, PtJSl% p, Jsla,I - I -  (13) 

Here d ,  u2 and u3 are the physical contravariant components of the velocity in the el-, e2- and 
e,-direction respectively, g, gl’, g12, g22, gZ3, g3’ and g33 are the metric tensors and S, are the 
source terms expressed by curvilinear co-ordinates. 

The discretized equations are obtained by integrating (1 1) over the appropriate control 
volumes and expressed in terms of neighbouring grid point values. In the present method a 
pressure correction equation is used instead of the continuity equation. 

SOLUTION PROCEDURE 
The discretized equations of (11) are solved by using the pressure correction method. A central 
difference approximation is used for all diffusion terms and an upwinding scheme is used for 
convection terms. Figure 1 shows the control volume with a central point P surrounded by 
neighbouring grid points E, W, S and N. This control volume is used for calculating all scalar 
variables, including the correction pressure, the total enthalpy, the turbulent kinetic energy and 
its dissipation rate. The control volumes for solving the momentum equations are shown in 
Figure2. All the discretized equations are solved by successive iterations with the linear 
relaxation method.24 No additional artificial viscosity is required for the present solution 
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Figure 1. Control volume for solving scalar variables Figure 2. Control volume for solving momentum 
equations 

procedure. For a three-dimensional flow calculation the control volumes are similar to the two- 
dimensional ones. 

Introducing the velocity correction terms into the continuity equation, the pressure correction 
equation can be obtained and expressed by the following discretized form: 

a,p;=x a,p;+S,. (I=E, W, S, N, U, D). 
I 

Because this equation is solved by the linear relaxation method, it may be rewritten as 

- aN p;Y + a,pb - aspi = N,. , (15) 

where the differential coefficients aN, ap and a, and the right-hand N,. term are determined from 
the previous iteration. This equation is solved for correcting the pressure and velocity field. 

For all scalar variables, such as I, k and E, the discretized equations are given by 

where (P represents one of the scalar variables. 
Then the difference equations for the velocities are 

apcpp=~aicpi+S, (i=e,w,s,n,u,d) (17) 
1 

or 

where (P denotes one of the variables. 
Throughout the near-wall regions the wall function together with the k-e turbulence model is 

employed so as to reduce the number of grid points. 
The time difference between two iteration steps depends on the local Mach number and grid 

sizes, etc. In the present method it is taken to be 10-5-10-3. The final convergence is decided by a 
residual source criterion. 
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COMPUTATIONAL RESULTS 

Axisymmetric gas turbine diruser 

The method has been used to study an axisymmetric gas turbine diffuser. The inlet Mach 
number is 0 3  and the Reynolds number, based on the inlet parameters and the mean diameter, is 
8-59 x lo6. The grid size is 97 x 53 nodes. The grid system generated is shown in Figure 3. The 
diffuser has its form shown by IEE'I'. For a careful treatment of the outlet boundary condition 
the additional number of grid points is adopted. Then the whole flow field, including three 

1'- 

Figure 3. Computational grid system of a diffuser 

Figure 4. Contour of Mach number in diffuser 
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additional computational domains 124E3, 1‘2’4‘E’3’ and E44’E’, is solved together with the 
diffuser. At the inlet boundary IoIb the distributions of total pressure, total temperature and 
velocity are given. No-slip and no-flux conditions are applied on the solid walls I,3E, Ib3’E’, 3E 
and 3’E’. On the walls the turbulent kinetic energy and its dissipation rate are also assumed to be 
zero. At the outlet boundary 244‘2’ the first derivative of all parameters along the x3-direction is 
taken to be zero. At the boundaries 31, 12,3’1’ and 1’2’ zero velocity is taken and the pressure, 
total enthalpy, temperature, turbulent kinetic energy and its dissipation rate are imposed to be 
uniform. 

The numerical computational results are shown in Figures 4-6. The distributions of Mach 
number and static pressure are plotted in Figures 4 and 5 respectively, while the velocity vectors 

Figure 5. Contour of static pressure in diffuser 

. .- 

Figure 6. Velocity vectorgram in diffuser 
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are plotted in Figure 6. As shown in Figure 6, there are two vortexes beyond both the upper and 
lower sides of the jet flow from the diffuser in the outside space. 

2 0  compressor blade cascadeZ5 

The solidity is 1.52. The inlet and outlet flow angles are -30" and 13-09" respectively. The inlet 
Mach number is 0-305. The computational grid system with the number of grid points of 99 x 24 
nodes is shown in Figure 7. The upstream and downstream regions are calculated together with 
the flow field in the blade channel. In these two regions the periodicity condition is applied. The 
grid points are distributed non-uniformly along the circumferential direction. Refinement of the 
grid system is required near both the pressure and suction surfaces. The comparison between the 
calculated and experimental results is shown in Figure 8. In Figures9 and 10 the velocity 
vectorgram and Mach number distribution are plotted respectively. The velocity distribution 
along the circumferential direction at the 80th axial station is shown in Figure 11. 

3Dflow in a turbine 

For verification, predictions for a turbine cascade are compared with threedimensional 
measured data.I2 The present calculation is carried out by using a body-fitted co-ordinate system 
as used in the previous examples and its data are interpolated into the normal sections by 
numbers 1-3 shown in Figure 12. Because of the symmetry of the blade, only half of the blade is 
treated and the number of grid points along the blade height is 19 nodes. The grid size used here is 
64 x 24 x 19 nodes. Figures 13 and 14 show the distributions of the longitudinal mean kinetic 
energy coefficients calculated and measured respectively. Figures 15 and 16 illustrate the velocity 
vectorgrams of the predicted and measured results respectively at the same normal sections. 

CONCLUSIONS 

A code to study internal turbulent flow problems has been developed. The code has been used to 
simulate the motion of axisymmetric diffuser, two-dimensional cascade and three-dimensional 
cascade flows. Numerical results were compared with experimental data. The agreement was 

Figure 7. Grid system of a compressor blade cascade 
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Figure 8. Comparison between experimental and calculated results 

Figure 9. Velocity vectorgram of a compressor blade cascade flow field 

Figure 10. Mach number distribution of a compressor blade cascade flow held 
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Figure 11. The circumferential velocity distribution at the 80th station 

Figure 12. Cascade geometry and its normal surf- 
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Figure 13. Distribution of calculated longitudinal mean kinetic energy coe5cicnt 
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NORMAL I NORMAL 1 NORMAL 3 

Figure 14. Distribution of measured longitudinal mean kinetic energy coefficient 

NORMAL 1 NORMAL 2 

Figure 15. Velocity vectorgram of predicted results 
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Figure 16. Velocity vectorgram of measured results 
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found to be good, showing that this code can be used as a tool for simulating and analysing two- 
and threedimensional internal turbulence phenomena. 

Greek symbols 

r 
E 

R 
Pef 
PI 
Pt 
P 

cp 
0 

Subscript 

cp 

Superscript 

O k 9  Oe 

APPENDIX: NOMENCLATURE 

empirical constants in turbulence model 
specific heat at constant pressure 
viscous vector 
metric tensors 
generation rate of turbulent kinetic energy 
total enthalpy 
turbulent kinetic energy 
static pressure 
laminar Prandtl number 
turbulent Prandtl number 
heat transfer term 
gas constant 
source term 
time 
static temperature 
physical contravariant components of velocity 
absolute velocity vector 
velocity components in cylindrical co-ordinates 
general curvilinear co-ordinates 

generalized diffusion coefficient 
turbulent energy dissipation rate 
conductive coefficient 
effective viscosity 
laminar viscosity 
turbulent viscosity 
static density 
empirical constants in turbulence model 
generalized dependent variable 
dissipation function 

corresponding to generalized dependent variable 

correction value 
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